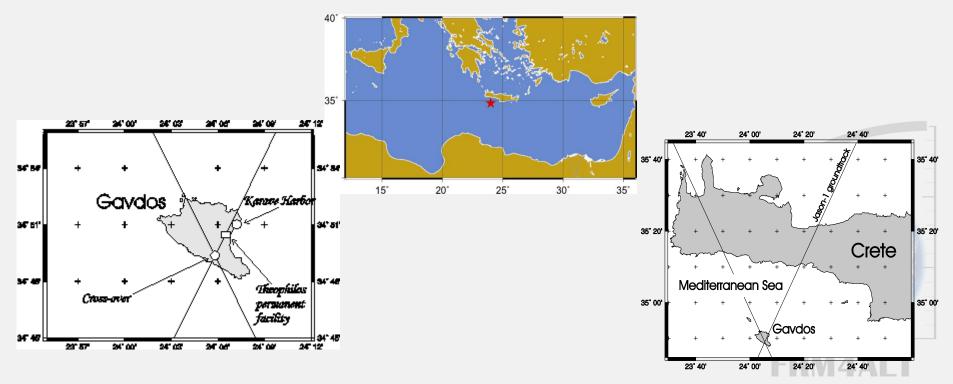
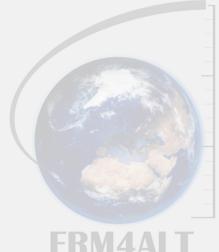


Absolute calibration of the Sentinel-3 altimeter with sea-surface and transponder at FRM Standards in West Crete, Greece

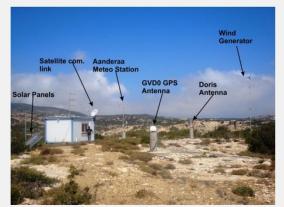
Mertikas S. P. (Crete Tech University), Craig Donlon (ESA/ESTEC), Pierre Féménias (ESA/ESRIN), C. Mavrocordatos (ESA/ESTEC), D. Galanakis (Space Geomatica P.C., Greece), T. Guinle (CNES, France), F. Boy (CNES, France), A. Tripolitsiotis (Space Geomatica, Greece), X. Frantzis (Crete Tech University, Greece).

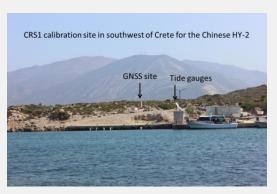

FRM4ALT

Gavdos Permanent Cal/Val Facility

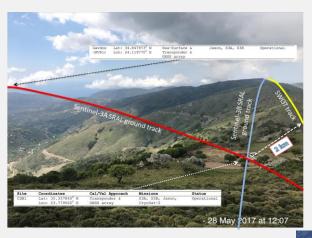


Tracks around Gavdos & Crete

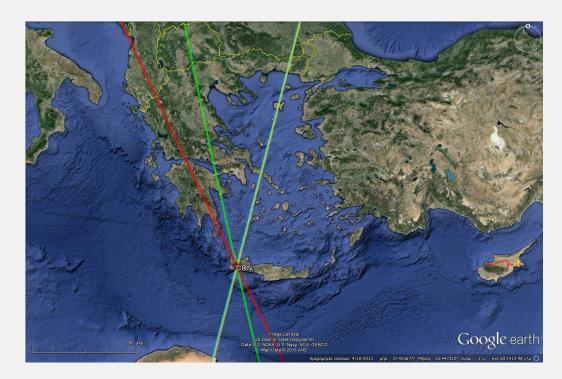




Gavdos and West Crete Facilities

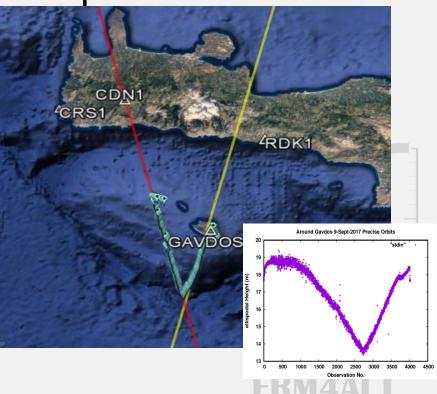


Transponder & Sea-Surface Cal/Val

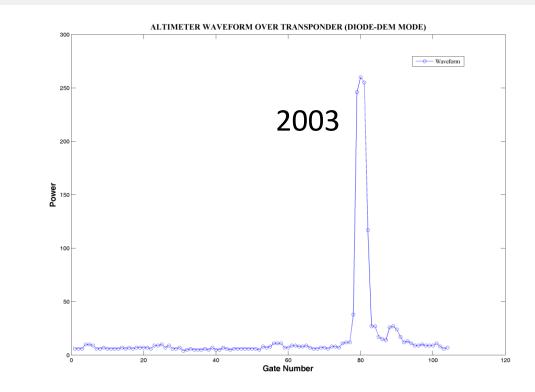


Land and Sea Calibrating regions

FRM4ALT

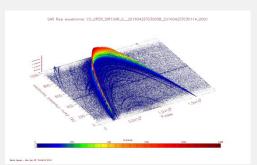


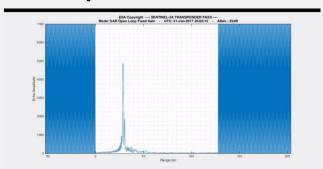
Boat Campaigns in Sept 2017

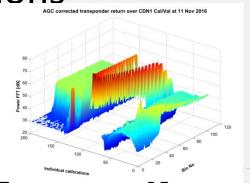


GVD3: Transponder Calibrations in Gavdos

CDN1: ESA Sentinel-3 Altimeter Calibration





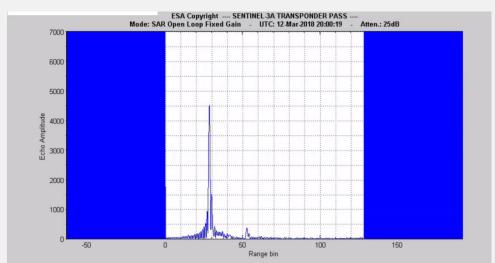


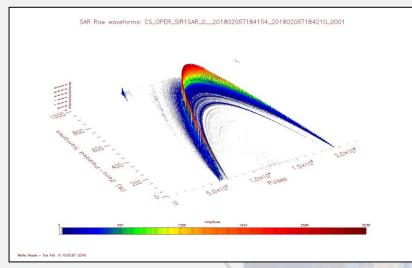
CDN1 Transponder Calibrations

Cryosat-2, 25-Apr-2016 Sentinel-3, 31-Jan-2017

Jason-2, 2-Oct-2015

Jason-2, 7-May-2016

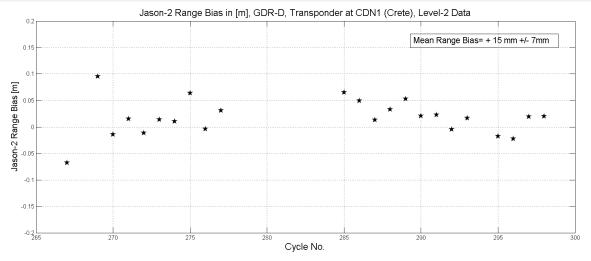




Recent Transponder Responses

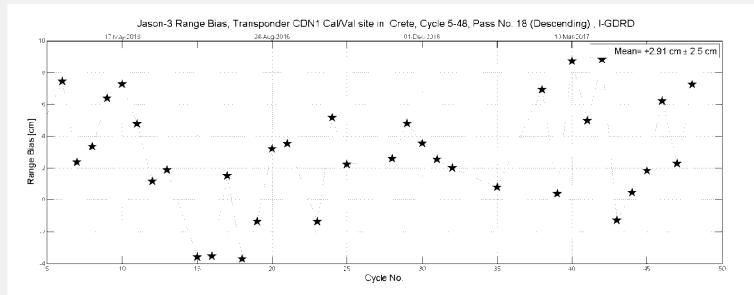
Sentinel-3, 12-Feb-2018

CryoSat-2, 5-Feb-2018



Jason-2 Transponder Calibrations

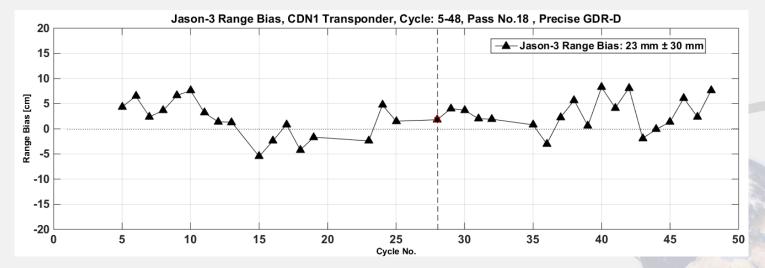
- Descending Pass No. 18, in 2015 and in 2016 (in Tandem with Jason-3),
- Precise Orbit [POE], Sensor-GDR-D,
- Range Bias B= +15 mm ± 7 mm,
- Variations may be due to <u>yaw steering</u> applied in Jason-2 & Jason-3.



Jason-3 Transponder at CDN1 Cal/Val

- Sensor-I-GDR-D, Cycles 5-24, MOE Orbit,
- Jason-3 Range Bias= +29 mm ± 3 mm.

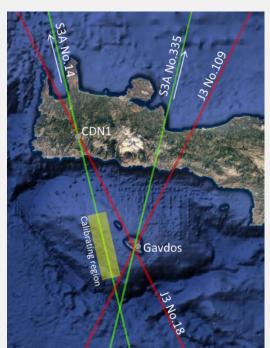
FRM4ALT

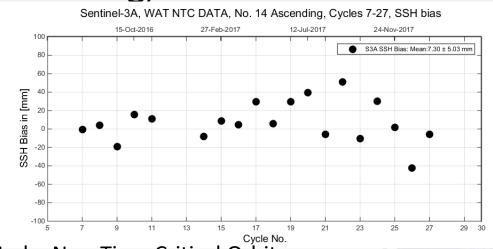


Jason-3 Transponder, No.18 Descending CDN1 Cal/Val West Crete

- GDR-D, Cycles 5-48, Precise Orbit,
- Jason-3 Range Bias= +23 mm ± 30 mm (median= +21 mm).

CDN1: 2017 worst winter over 50 years





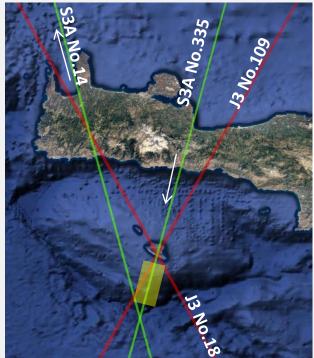
Sentinel-3A SSH Cal/Val, No. 14 Ascending, West Gavdos

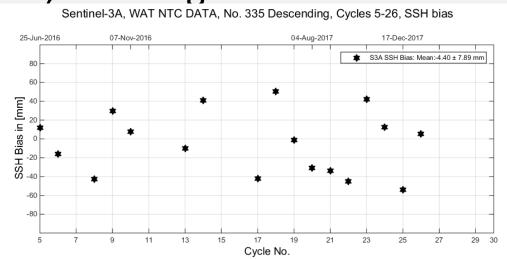
SAR Mode, Non-Time Critical Orbit,

Same orbit as the transponder orbit at CDN1 Cal/Val in Crete,

SSH Bias = +7 mm ± 5 mm (Ascending)

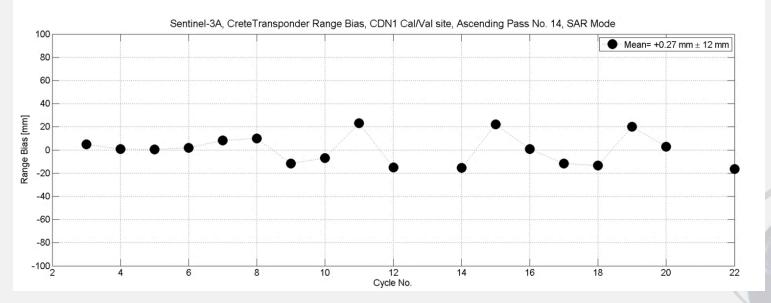
Pass No. 14 next to and west of Gavdos





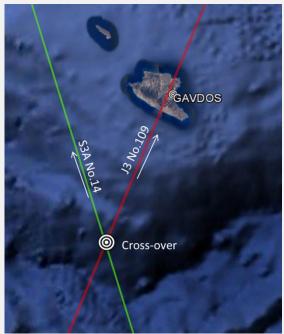
Sentinel-3A, Sea-Surface Calibration Descending No. 335, Crossing Gavdos

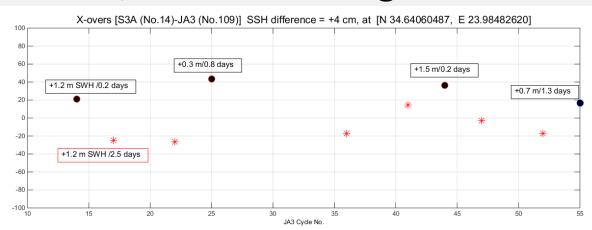
Pass No. 335 (Descending), Similar to Jason No.109 orbits Mean Range Bias = -4 mm ± 8 mm (Descending).



Sentinel-3 over transponder at CDN1

Sentinel-3A, SAR, Pass No. 14 (Ascending), Passing over CDN1 Transponder, Mean Range Bias = +3 mm ± 12 mm.



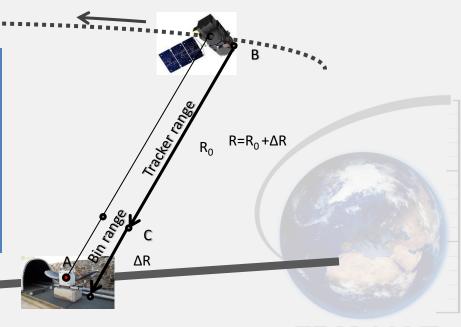


Cross-Overs [S3A (No.14)-JA3 (No.109)] south of Gavdos, both ascending orbits

Black circles: Cross-over almost the same day,

Red star: Cross –over more than 2 days

Sentinel-3A measures SSH higher than Jason-3 by **+4 cm about**.



Simultaneous Sentinel-3A and Jason-3 over CDN1 Transponder

- On 11-Nov-2016, separated only 20 sec:
 - Sentinel-3A: Range Bias = + 23 mm (Ascending No. 14)
 - Jason-3 : Range Bias = +18 mm(Descending No. 18)
- Difference S3A (Asc)-JA3(Desc) = + 5mm on "simultaneous" pass @ CDN1.

DEM (R₀) applied

FRM4ALT

Summary of Cal/Val

Sea-Surface	Satellite	Asc
Calibrations	Jason-1	+28

ı	Satellite	Ascending	Descending	Average	Cycles
5	Jason-1	+28 mm	+50 mm	+ 39 mm	70-100
	Jason-2	+7 mm	–23 mm	-8.0 mm	2-298
	Jason-3	-30 mm	-32 mm	-33.5 mm	1-24- Processing
	Sentinel-3	+7 mm (No.14)	-4 mm (No.335)	+1.5 mm	5-26
	Cross-Over	S3A and JA3		+ 40 mm	10 cycles

Transponder
Range Calibrations

Satellite	Data	Descending	Year
JA-3(CDN1, Crete)	I-GDR, MOE	+ 29.0 mm	2016-2017
JA-3(CDN1, Crete)	GDR-D, POE	+ 23.0 mm	2016-2017
S3A (CDN1, Crete)	SAR, NTC	+ 3 mm	2016-2017
S3A versus JA3	20 sec apart	+5 mm	11-Nov-2016

Fiducial Reference Measurements 4ALT

- Gavdos/Crete: Permanent Altimeter Calibration Facility: Long-term: (1) Bias & drifts; (2) Biases among missions; (3) Connect different missions.
- To attain Fiducial Reference Standard:
 - Documented SI (Système international d'unités) traceability,
 - Independence from the satellite geophysical retrieval process,
 - Uncertainty budget for all FRM instruments and measurements,
 - FRM measurement protocols.
 - Specification of uncertainty budgets for:
 - Instrument measurements;
 - Cal/Val Methodology employed;
 - Algorithms, Models (geoid, MSS, dynamic topography, transponder, etc.).

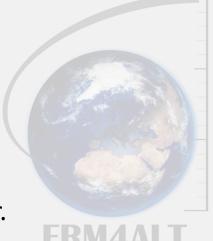
FRM4ALT Best Practices (1)

Cal/Val Site Selection:

- Protected harbor,
- away from runoffs,
- ground subsidence (harbor, buildings,...),
- Deep sea (>200m),
- Geoid, MDT, absolute gravity, circulation available,...

Procedures:

- Observations for 6 months before set up,
- Equipment housing, protection, power, comms,...
- Multiple pillars (3 GNSS, 3 TG, 2 meteo,..)
- Unobstructed tie control and stability.



FRM4ALT Practices (2)

- GNSS Instrumentation:
 - At least two diverse type receivers and antennas,
 - Different positioning to produce final coordinates,
 - Characterize antennas every 2-3 yrs,
 - Sampling rates 30 sec,
 - Ring buffer for 2-3 days,
 - Backup instrumentation available.
- Ground Stability:
 - Monitor continuously,
 - 2-3 yrs before altimetry Cal/Val,...
 - Establish heights with uncertainty <± 0.5 mm/yr.

FRM4ALT Practices (3)

- Reference Frames:
 - Transform all coords into altimetry system,
 - Be in agreement with altimetry products (ITRF2014, ITRF2008, ...),
 - Relation of Cal/Val site wrt MDT, Geoid, MSS, ... Difficult as absolute geoid height ±35cm ellipsoid.
- GNSS Processing:
 - Apply various techniques, strategies (DD, PPP, Iono free.)
 - Determine ellipsoid height with uncertainty,
 - Any differences more than ±2 mm, reconsider,
 - Final Cal/Val site coords in tide-free wrt satellite orbit,
 - Reprocess GNNS data every 6 months.

Uncertainties on FRM Standards

Standard Uncertainty	Uncertainty Estimates (a)	Divisor (b)	Standard Uncertainty (c)=(a)/(b)	Sensitivity coefficient (d)	Uncertainty components (e) = (c) x (d)	Degrees of freedom
GPS Height Processing [A]	0.14 mm	1	0.14mm	1	0.14 mm	1759
GPS Receiver Manufacturer	6.0 mm	√3	3.5 mm	1	3.5 mm	50
GPS Antenna Reference Point – Lab Calibration	2.0 mm	1	2.0 mm	1	2.0 mm	∞
Water Level Observations	1.3 mm	1	1.3 mm	1	1.3 mm	19
Tide Gauge Zero Offset	5.0 mm	√3	2.9 mm	1	2.9 mm	2
Tide Gauge Vertical Misalignment	2.4mm	√3	1.4mm	1	1.4mm	50
Tide Gauge Calibration Certificate	5.5 mm	1	5.5mm	1	5.5 mm	∞
Spirit Levelling [Type-A]	0.13 mm	1	0.13 mm	1	0.13 mm	15
GPS & Tide Gauge Thermal Expansion (Monument)	1.1mm	√3	0.6 mm	1	0.6 mm	50
Spirit Levelling Target Misalignment [Type-B]	1.0 mm	√3	0.6 mm	1	0.6 mm	50
Observers' Experience	1.0 mm	√3	0.6 mm	1	0.6 mm	50
Spirit Levelling Instrument	1.0 mm	√3	0.6 mm	1	0.6 mm	∞
Water Level at Tide Pole	1.0 mm	√3	0.6 mm	1	0.6 mm	∞
MSS/GEIOD Models	5.8 mm	1	5.8 mm	1	5.8 mm	8
Cal/Val Processing & Transformations	0.5 mm	√3	0.3 mm	1	0.3 mm	50
Geoid Slope	10.0 mm	√3	5.8 mm	1	5.8mm	50
Unaccounted Uncertainty (Geoid ,N, MDT,)	50.0 mm	√3	5.8 mm	1	5.8mm	50
Root of Sum of Squares [RSS]	52.0 mm	٧3	28.8 mm	1	28.8mm	50

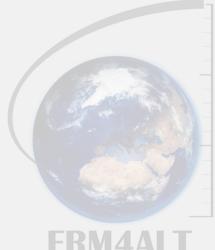
Acknowledgements

Support provided by:

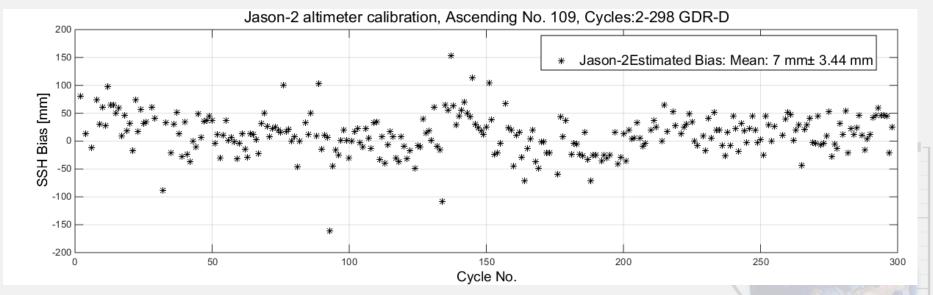
- ESA/ESTEC [Craig Donlon],
- ESA/ESRIN [Pierre Féménias],
- EU-Copernicus,
- CNES [T. Guinle, F. Boy].

Next Month in Crete

- International Cal/Val Altimetry Review & Applications Workshop,
 - 23-26 April 2018 in Chania, Crete, Greece.

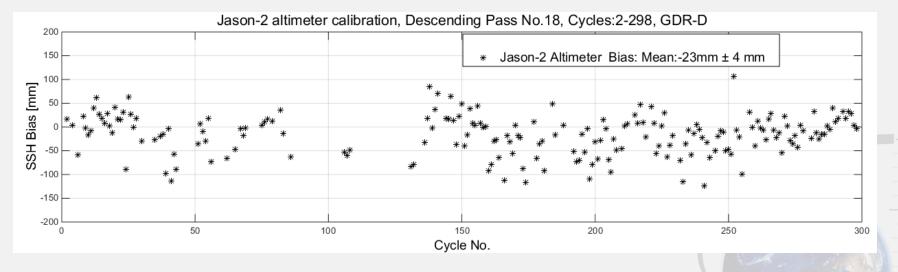


Back-Up slides



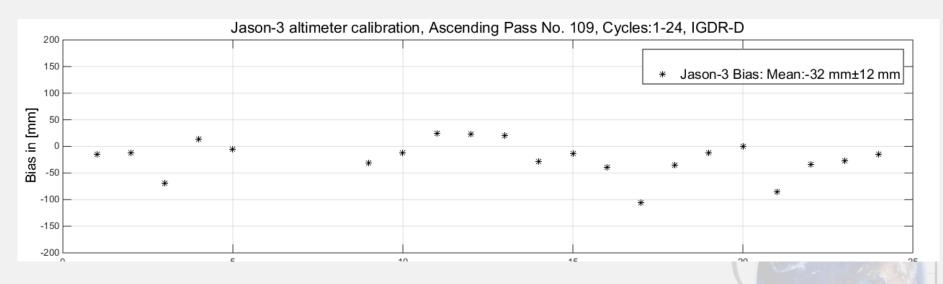
Jason-2 Ascending Pass No. 109

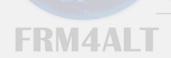
- Ascending Pass No.109, GDR-D, Cycles: 2-298;
- Calibration region 14.5km-24 km;
- Bias= +7 mm ±3 mm, using local gravimetric geoid model;



Jason-2 Descending Pass No. 18

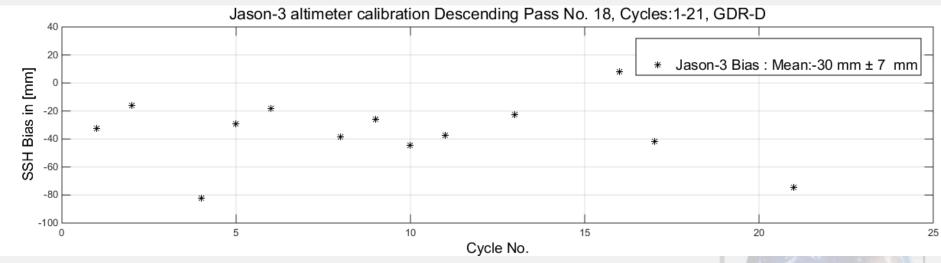
- Descending Pass No. 18, GDR-D, Cycles: 2-298;
- GOCE dynamic topography; Cal region 9km-20 km;
- Bias= 23 mm ± 4 mm





Jason-3 Ascending Pass No. 109

- Ascending Pass No.109, IGDR-D, Cycles: 1-24;
- Calibration region 14.5km-24 km;
- Bias= -32 mm ± 12 mm, using local gravimetric geoid model;



Jason-3 Ascending Pass No. 18

- Descending Pass No.18, IGDR-D
- Bias = -30 mm ±7 mm, using local gravimetric geoid model;

